Rational Points on Intersections of Cubic and Quadric Hypersurfaces
نویسنده
چکیده
We investigate the Hasse principle for complete intersections cut out by a quadric and cubic hypersurface defined over the rational numbers.
منابع مشابه
Rationally Connected Varieties over Local Fields
LetX be a proper variety defined over a fieldK. Following [Manin72], two points x, x ∈ X(K) are called R-equivalent if they can be connected by a chain of rational curves defined over K, cf. (4.1). In essence, two points are R-equivalent if they are “obviously” rationally equivalent. Several authors have proved finiteness results over local and global fields (cubic hypersurfaces [Manin72, Swinn...
متن کاملRATIONALLY CONNECTED VARIETIES OVER LOCAL FIELDS 359 Conjecture
Let X be a proper variety defined over a field K. Following [Ma], we say that two points x, x′ ∈ X(K) are R-equivalent if they can be connected by a chain of rational curves defined over K (cf. (4.1)). In essence, two points are R-equivalent if they are “obviously” rationally equivalent. Several authors have proved finiteness results over local and global fields (cubic hypersurfaces [Ma], [SD],...
متن کاملThe Topology of Rational Points
Introduction 1. Comparison of Density Conditions 2. Curves 3. Conic Bundles over P 4. Smooth Cubic Hypersurfaces 5. Smooth Complete Intersections of Two Quadrics in P 6. Elliptic Surfaces 7. Some Abelian Varieties 8. Some Kummer Surfaces 9. Some Other K3 Surface Examples References The aim of this article is to provoke a discussion concerning the general nature of the topological closure of the...
متن کاملLooking for Rational Curves on Cubic Hypersurfaces
The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...
متن کاملComputing quadric surface intersections based on an analysis of plane cubic curves
Computing the intersection curve of two quadrics is a fundamental problem in computer graphics and solid modeling. We present an algebraic method for classifying and parameterizing the intersection curve of two quadric surfaces. The method is based on the observation that the intersection curve of two quadrics is birationally related to a plane cubic curve. In the method this plane cubic curve ...
متن کامل